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The necessary Legendre condition for problems of optimum {in the sense of mi- 
nimum wave drag) supersonic flow past bodies is obtained, Plane and axisym- 
metric ilows are considered on the assumption of imposition of isoperimetric 
constraints of a general form. Shock-free flows and flows with attached shock 
waves are investigated. The method here proposed is used for deriving the sec- 
ond order condition in the particular case when it is possible to pass to the refe- 
rence contour, and which has been earlier obtained by Shmyglevskii [1] and then 
by Guderley and others [2J. 

1. Statement of problem. Shock-free supersonic flows (Fig. 1) and with 
attached shock waves (Fig. 2) past plane and axisymmetric bodies are considered. In 

Fig. I. ab is the contour of the body, and ac and 

c bc am the characteristics of the first and second 
set, respectively. The iIow to the Ieft of ac is 
assumed to be known, In the case of shock-free 
flow the stream at inlet is generally turbulent. 
In Fig, 2 ab is the contour of the body, cc isthe 
attached shock wave, bc is the characteristic 
of the second set, d is the point of contour dis- 
continuity, and dn and dn are characteristics 
of the fimt set that bound the ramfaction wave 
dmcnd. The oncoming stream in Fig. 2 is as- 

X sumed to be uniform and parallel to the x-axis. 
Fig. 1 It is also assumed that inside region abc the 

flow is supernonic and is free of shock waves, 
Velocity projections on the zr - and y-axes are denoted by LC and u , the pressure by 

P , the density by p , the stream function by 41, with d+ = y’p (udy - V&I& where 
Y = 0 or v = 1 in the plane and axisymmetric cases, respectively. Along the body 
9 is assumed to be equal unity. 

A stationary non&entropic flow of gas inside the &o-region is defined by equations 

Pressure p =2: p (U, U, 9) and density p = Q (u, v, cp) are defined by relationships 

where x is the adiabatic exponent and cp (9) is the entropy function. 
Wave drag is defined by the iimctionai 
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x = ab Y’P (z 0.h Y) 4/ s (1.2) 

The position of point a, and in the case of shock-free flow,also the slope 2,’ of con- 
tour ab at that point,are assumed to be fixed. One of the coordinates (q, or #J of point 
b can be arbitrary. 

C 

a X 

Fig. 2 

The isoperimetric condition imposed on the contour of the body is of the form 

r = j f (z (Y),SY (~1, y) dy (L3) 

where x (v) is a function that defines the body contour and x’ is its derivative with 
respect to y_ 

Along the contcur ab the condition 

ux’ (y) - u = 0 (1.4) 
of no flow through must be satisfied. 

We formulate the problem of optimum as follows. Find a function x (y) wbichyields 
the minimum of functional ( 1.2) when Eq. (1.1) in region ubc and conditions (I.. 3) 
and (1.4) along the contour ab are satisfied. 

In the case of a shock-free flow arcund a body the condition of stationarity can be 
satisfied by using a smooth optimum contour. For flows with attached shock waves the 
situation is different: the optimum contour has generally an infinite number of discon- 
tinuilies which tend to become denser toward the leading point of the body [3]. To de- 
rilre the necessary Legendre condition it is sufficient to consider a contour with a single 
discontinuity (Fig. 2). 

2. Shock-free flowr. We introduce Lagrange multipliers Y,, (u), y and 
hl (9, v) and construct the Lagrange functional 
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I = j [Y’P + 70 (Y) w - u)+ rlldy + &wl+M,) WdY 

We take t’ (y) as the control function. If the flow pattern under admissible conditions 
is to remain unchanged, the quantity 1 ih 1 must be fairly small. 

The conjugate system for hi is of the form [4] 

(2.1) 

where as = xp/p isthesquareofthespeedofsound. 
System (2.1) is supplemented along the body contarr by the natural boundary condi- 

tiOnS 

hl=--1, b=7,,v 

and along the characteristic bc by 

h, - hry’@ tg a 

= 7 s (I, -+fd)dY+r* (2.2) 
yb 

=0 (a = arosin a I w) (2.3) 

where a is the Mach angle and y* is a constant of integration. We have 

8I= 2 [y”8p + 70 (6~8~’ + v8x’ + x’8v - 8~) + 78f] dy + 

U 
yvhi8p + M +) dy + (Mu - M -$--) d$ - 

0 = 

ss( S 
Y%&P - h&4 + hrlla $ + hII+ awY 

YYP 

(2.4) 

The part of the contour integral (2.4) associated with the characteristic UC vanishes, 
since the inlet stream is specified and 8x.’ = 0. Along the characteristic bc and con- 
tour a6 the relationships 

dy -= sin (a - 8) 
d’i’ y”pw sin a 

(along bc), d$ = 0 (along ab) (2.5) 

where 8 = arotg (v / u) is the slope of the velocity vector relative to the x-axis, 
are satisfied. 

We represent increments 8p, 8p, 8 (1 / pv), 8 (u I u) and 8f in (2.4) in the form 
of series expansion in powers of 81.4, 8v, 8x and 6s ( 8tp s 0, since in the influ- 
ence region abc (I!?) shock waves are absent). Having done this, we retain in formula 
(2.4) linear and quadratic terms, then, using the condition of stationarity and equalities 
(2.5) after transformation we obtain 

“j 8x 8x’ + a,r 8~‘~ 
> 

dy + (2.6) 

bc 

+ ala8u6v + a9s8vs) d$ + p (Al+%2 + Al,8u8v + A,,8v2) dq dy 

Analytic formulas for aij and A i, appear in Sect. 3 below formula (3.1). 



Legendre condition In optimum problems of supersonic gasdynamics 993 

The control increments 8x’ are chosen on the assumption that function 6s’ (#) is non- 
zero only in the interval (y’, go 3_ a! of length a and that a is tb~ small parameter 
of the problem. We define the quantity 6x’ in that interval by another small parameter 
pi. It will be readily seen that the order of magnitude of the increment 8z does not ex- 
ceed ati* 

To determine the pertu&ed motion induced by the variation of the contour slope ne- 
cessitates the consideration of a system of variational equations, which is obtained as 
the result of linearization of equations of motion relative to the unperturbed Row. Ana- 
lysis of that system supplemented by linearized boundary conditions shows that outside 
the characteristic narrow band with base e the perturbations of stream parameters are 
of order q, while within the band itself they are of order e;,, 

Let us introduce the characteristic variables c and q which will be considered asthe 
independent variables of the problem. The variational equation for the stream function 
is of the form 

8% = 4 tf, t1)69 + bs (E, 4. 8% + b* (Et ?Y%l (2.7) 

b t -2 & (f& + W&h bs = & @I% + WI,) 

The specific form of function blis immaterial for the subsequent analysis. 

t 

~ 

bet the contnur ab be represented in the &-plane by 
b curve E = rc (q) (Fig.3). As stipulated,function s\p va- 

nish- along the characteristic ac. Its value along the 
contour ab is determined by the condition 

&rG Aq = 8q + tp,sz = 0 
yd -- where A* is the total increment I@ associated with the 

I 
I 

shift of contour points parallel to the z-axis by the small 
quantity 82. From the last equaltty we obtain 

QI G s (2.3) 

Fig. 3 Ss Isr ($, ql = g (482 (rl), g (tl) = - 9% (rl) 

where 9 is taken as the independent variable along &. 
Mfferentiating the expression for &I& along ab, we obtain 

d6Ep 1 dri = 8% + SE’ (+% = g’ ($8~ (rl) + g (rlI8s’ (rl) (2.9) 

Here and subsequently the prime idicates differentiation with respect to q. 
Using equali& (2.7), (2.8) and 81# lac = & 1 oc = 0 , we obtain the following 

system of integral equations for functions &p and && (Fig.3): 
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we 11) = ME, rlPP(E9 q)+ ~~“8* + (b~+)8lj]dq 
0 

whose solution is 
ss - 0 (a%)* 69s = 0 (=I) (2.10) 

For the characteristic q = Const from (2.7) and (2.10) we obtain 

$&%l= &&&I + O(=e,) 

By solving this equation with allowance for the boundary condition (2.9) we obtain 

which is accurate to within quantities of order se,. We separate now the principal parts 
(of order a,) of increments Ifu and 6~ in formula (2.6) and obtain 

By varying these equalities, eliminating in them the variations Q, &I& and &$,, 
and using formula (2. ll), we obtain 

- = Eta (Et q) 6x’ 

(2.13) 

which is accurate to within quantities of order ear. 
Passing from variables +I and y to 5 and q , and using equalities (2.13)‘ we represent 

the expression for 61 as 

where the integral is taken along the characteristic ?j = con& of the first set, and the 
first and second terms are determined at the intersection points of the characteristic 
with the contour ab and the characteristic bc. 

Equation (2.14) yields the necessary condition (the Legendre condition) for the mini- 
mum of I 

Q (q) > 0 (2.16) 
A distinctive feature of this problem is that the control increment along segment e 

of the body contour generates inside the narrow band with base e of the unperturbed 



Legendre condition In optimum problems of supersonic gasdynamics 995 

stream characteristic an increment of gas velocity of the same order. This is the con- 
sequence of the appli~tion of the linear theory, which in this case is admissible owing 
to the smallness of f 5s’ I . This is broadly similar to the “variation in a narrow band” 
applied in problems of control to the principal part of the basic differential operator [5], 
except that’ in the latter problems the control is concentrated inside the region, while in 
the case considered here it operates at the boundary, The appearance in formufa (2.15) 
of terms computed at the characteristics is due to this feature. 

If the problem admits passing to the reference contour, condition (2.16) is equivalent 
to the inequality obtained in [1, 21. In fact,if we set f = z’ ,then system (2.1)hasfor 
h, the solutions h, = --1 and h, = y* which satisfy boundary conditions [4, 61, 
and the problem admits passing to the reference contour. In such case Pf / 8~‘s s () 
and the first term in (2.15) vanishes. The integral in (2.15) also vanishes, since A ij 
are of the form 

/l&g- 
s ah, 

I=1 
ct*j + 2 ay d,‘j 

I=1 

Thus in this particular case condition (2.16) reduces to the inequality 

a&? + ad& + a,&2 >- 0 
or to what is equivalent 

tge>- 
sin 21(1-f- 039 22) 

X + COG 22 
which is the same as tbat obtained in [l, 23. 

It is important to note that the slope x’ of contour ab of the body is the true control. 
In the particular case when it is possible to formulate the input problem at the reference 
characteristic be, it is convenient to consider a specially chosen g~y~~c function 
defined on be. For example, the Mach angle a was taken as the control in El]. The 
relation between variations fix’ and 6a can be readily derived from (2.13) and the 
relationship 1 + x = ws (X - cos 2~). 

a. Flows with rttrchod shock wavea. The method of derivation of the 
necessary Legendre conditions described in Sect. 2 can be used in problems of optimum 
flow with attached shock waves past a body (Fig. 2). Since the contour of the body has 
a discontinuity, Eqs. (1.1) must allow in region abc for dhcontinuous Lagrange multi- 
pliers [4]. We assume that the characteristic cd is the line of discontinuous bagrange 
multipliers and that in the influence region there are no other such lines. In that case 
the Lagrange functional is of the form 

ad ab 

where & and Ss denote regions abc and adc ,respectively. 
The conditions of stationarity of I are given in [3]. Unlike (2.6) the formula for 

increments of I contains variations of the entropy function 69 (9) associated with 
the change of shape of the shock wave UC. In the considered problem all gasdynamic 
quantities at points UC depend only on the angle o of shock wave inclination to the 
s-axis. Throughout the influence region’ &g, (9) rc (dq I da)8a (Ip), where the deri- 
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vative dpl I da is determined at the point of intersection of UC with the streamline 
up = eons& The derivation of formula for 61 is on the whole similar to the derivation 
of (2.6) for a shock-free flow past a body. The result can be presented in the form 

(3.1) 

where wo is the velocity of the oncoming stream ; gl’ is a vector whose components are 

‘,“~;n6~; &p) ; Ah, = h+*) - hil) is the discontinuity of the Lagrange multiplier 

1 ; a, b and A are symmetric ( 3 x 3)- matrices and 

nl = yvhl+, n2 = ir,,, n, = h2 FJ~-V, ii, = -----c 

i& = -y”pVa 6 tg cs, iis = pus tg a 

5= 
sin (a - 0) 

, 4= 
sin (a + 6) 

y*pw sin a y”pw sin a 

(A, and As are (3 X 3 )-matrices of second derivatives of functions p (% 2% Cp) 
and p (u, v, cp) , respectively). 

Formulas for ail am obtained from Ai, by substituting iif for ni , while those for 

bij are obtained from ail by the substitution of I; for t 
In characteristic variables E and q region ti+d-bc (Fig. 4) corresponds to the in- 

fluence region ; sector did- corresponds to point d in the physical plane x9 and to 
the extreme position of the characteristic E = const in region almond (Fig. 2). 

Let us consider section ad+ of the contour (Fig.4). We assume that the variation 

I&z’ (3 = 0 (al) is nonzero only in the interval [Q, qd;] of Length e, and consi- 
der 8 and e, to be small parameters of the problem (the prime denotes a derivative 

with respect to q). To determine the perturbation induced by changes of the contour 
slope it is sufficient to find the relation of variations &I#, rrzP, and &sp,, to &r’. First, 
we determine the relation between these variations along the contour ab and along the 
shock wave UC. Equalities (2.8) and (2.9) are satisfied along sections ad+ and d-b 
(Fig. 4), and along section d+d- we have 

e$ (q) = gl(tl) 6xd, %l= + s$ = g,(q) 6xd (3.2) 
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junction gl (7) can be determined by calculating the rarefaction flow in the neighbor- 
hood of point d as the lim [- qS (?Q] for E -+ &d along the characteristic q= const. 

At points of the shock wave uc the following functions are known: 

u = u (a). v = v (4, P = P (d, 9 = 9 (Y) 
We have 

%I#” = u (a) P (a) = fi (a), %Y-’ = - v 00 P @I = f¶ (a), 

9 = tp (ZJI 

By carrying out the complete variation of these relationships, eliminating in themthe 
variations 6u and 6x (6x (y) is a small displacement of a point of the shock wave in 
a direction parallel to the x-axis), and passing to variables E and q, we obtain 

~+~~~~+~~=o (3.3) 

6G = @% + a&L + %slp (3.4) 

The specific form of functions a, and a5 is immaterial in further considerations. 

Fig. 4 

The analysis of Eq. (2.7) supplemented by bamdary conditions (2.8),( 2.9),(3.21 and 
(3.3) shows that the variation &, is of order e, only in narrow bands qt = con& 
with i = tf , 2, 3 (Fig, 4), the variation & only in narrow bands Et = const with 
f =E: 1, 2 . Outside these narrow bands &#,, = 0 (eel) and Ss, = 0 (et& The 
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order of variation of 6$ does not exceed SSi throughout the influence region. 
Analytic formulas for functions Ss, and &#, within the boundaries of the narrow 

bands can be readily deterrr&red with the use of equalities (2. ‘j), (2.9) and (3.3), since 
the formula for &$, in the narrow band % = cOnSt (Fig. 4) is provided by (2.l.l) . 
The expression for 6$+ in the narrow band El = const is obtained as the solution of 

problem d/(&8&&) = bs& + 0 (SSJ, Q+ je, = - LG%-J,- 
This means that formula (3.3) represents the law of reflection of perturbations from 

the shock wave ac , and that of reflection from the contour ab is provided by formula 
(2.9). Thus perturbations reaching the shock wave UC along the characteristic narrow 
bands Q = const are reflected along narrow bands Ei = con& in conformity with 
(3.3), while those reaching the contour Cb along the narrow bands & = const are 
reflected along narrow bands Tji = const in conformity with (2.9). 

We denote the solutions of related integral equations in the narrow bands qi = COnSt 
by Q,, = R&C’ + 0 (et?,),and in the narrow bands Et = const by &#$ = 
Pi&.$ j- 0 (ear). The variation 6a is of order 8, only along segments cicr’and Cscs’ 
of the shock wave UC.’ In accordance with (3.4) we have 

6o = (asPi + a,Ri) 63’ $r 0 (8~) = Ci6Xr + 0 (%) 

&p (9) = $- scs Ee dJx’ + 0 (EE,) 

The quantities 6~ and 6~ are obtained by the variation of relationships (2.12) 

6U = t&& + t&pl, + t&q+ Qv = t*& + G&P, + t&g, 

(see (2.13)) ; formulas for ti and td are obtained from ts and t5 by substituting deri- 
vatives E, and 8, for qrand Q, 

To obtain the Legendre condition it is necessary to know the transverse dimensions 
of the narrow bands. Let Aqi, AEi and A*, be the dimen~o~ of bands. We have 

Aql = e 3 rle, 
e 

A51 = an' (4) I,, 
5 l,e, Ahg, = de Is;; @I 1 tie z na,e; 

Cl 

where q = zl (E) is the equation of the shock wave 4C. 
We obtain in tne same way AQ = ~$8, Ati = &s and Aqi = nqe. 
Formula (3.1) for 61 can now be written in the form (see Figs. 2 and 4) 

81 = 52 (T&&)S (si)s + 0 (a”&*) (3.5) 

2 I mi f f (qr3Aqi3Vy 
i=l Qi=c0n8t 
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% l = (@f, GiJlf, 01, n? = (Vf9 Vf 9 01, qis = (Wf, &df, 4) 
where the derivative & / & in the first term is taken along the contour ad+ and the 
derivatives dp/dq and dq/dg in the fourth and fifth terms are taken along the char- 
acteristics bc and cd, respectively. 

The necessary condition for minimum I (the Legendre condition) 

fJ t%3 zd 0 
follows from (3,5). 

(3.7) 

The terms in formula (3.6) (except the first) for 51 can be divided into three groups 
whose origin is associated with perturbation propagation in the narrow bands along the 
characteristics ?lr = const, Ef = cons& and the streamlines -I& = const. The first, 
second and third groups contain multipliers rl, lf and mi , respectively, and each of 
these groups contains integral terms and terms outside the integrals. The presence of 
integral terms is due to perturbations propagating along related narrow bands, while terms 
outside the integrals appear as the consequence of intersection of these bands with the 
characteristics bc and cd and with the shock wave ac. 

Note that the number R of perturbation reflections from the shock wave (in Fig. 2 
n = 2) depends on the position of point dr on the contour section ad+. The above 
analysis is readily applicable to any arbitrary n. 

If the initial point di is located in section d-b of the contour ab, the perturbation 
wave that propagates from the point along the characteristic q = con&, reaches the 
characteristic &c and continues beyond the boundaries of the influence region dbc. 
In that case formula (3.6) for Q contains an integral along the characteristic ‘7 = 
const and two integrated terms which are computed at the intersection points of that 
characteristic with the contour d-b and with the closing characteristic bc. This case 
is analogous to that considered in Sect. 2 of shock-free flow around a body. Owing to 
this, the inequality (3.7) coincides with (2.16) as regards points of contour d-b , 

At the discontinuity point d of contour ab the following two limit inequalities must 
be satisfied : 

Q (qd+) > O* '62 (?a-) > o 

The method of slope variation along 
a small section of the body surface was 
used by Chemyi [7] in the case of attached 
shock wave generation for proving that 
for a specified ratio of body thickness to 
its length the wedge is not a body of ml- 

Fig. 5 
nimum wave drag. He varied the initial 
contour as shown in Fig, 5 (regions of in- 

creased and diminished pressure are denoted by plus and minus signs, respectively). The 
wave drag reduction is explained by that the rarefaction wave reflected from the shock 
wave without change of sign (for a positive reflection coefficient) lowers the pressure 
at the right-hand end of the body, while the compression wave reflected from the shock 
wave does not reach the body. This method was used in [S, 93 in the problem of find- 
ing the optimum shape of a body in the presence of a tangential discontinuity and, also, 
in the problem of the composite nozzle. 
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The above considered negative decompensation of pressure perturbations in the first 
instance along the contour of the body is eliminated by the induction of a contour 
discontinuity [3, 8, S]. This result was obtained in investigations of the properties of 
the first variation of the minimizing functional. The problem of negative decompen- 
sation elimination in the second order can be solved by analyzing the necessary condi- 
tions of the Legendre kind. 

The author thanks K, A. Lur’e for his assistance and constant interest and also A. N. 
Kraiko snd A. V. Shipilin for their valuable advice, 
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The structure of solutions of gasdynamic equations is investigated in the caseof 
unsteady double waves in the neighborhood of the q&scent region. A general 
concept of double waves is presented in the form of special series with logarith- 
mic terms. Results of numerical computations are given. 


